Ketika menghitung rata-rata bergerak yang berjalan, rata-rata menempatkan pada periode paruh waktu masuk akal. Pada contoh sebelumnya, kami menghitung rata-rata periode 3 periode pertama dan menempatkannya di samping periode 3. Kami dapat menempatkan rata-rata di tengah Interval waktu tiga periode, yaitu, di samping periode 2. Ini berjalan dengan baik dengan periode waktu yang aneh, tapi tidak begitu baik bahkan untuk periode waktu tertentu. Jadi, di mana kita akan menempatkan moving average pertama ketika M4 secara teknis, Moving Average akan turun pada t 2,5, 3,5. Untuk menghindari masalah ini, kita menyelesaikan MA dengan menggunakan M 2. Dengan demikian, kita menghaluskan nilai yang merapikan Jika kita menghitung jumlah rata-rata, kita perlu memperlancar nilai yang merapikan Tabel berikut menunjukkan hasilnya dengan menggunakan implementasi M 4.Spreadsheet penyesuaian musiman dan Eksponensial smoothing Sangat mudah melakukan penyesuaian musiman dan menyesuaikan model pemulusan eksponensial menggunakan Excel. Gambar layar dan grafik di bawah diambil dari spreadsheet yang telah disiapkan untuk menggambarkan penyesuaian musiman multiplikatif dan pemulusan eksponensial linier pada data penjualan kuartalan berikut dari Outboard Marine: Untuk mendapatkan salinan file spreadsheet itu sendiri, klik di sini. Versi pemulusan eksponensial linier yang akan digunakan di sini untuk tujuan demonstrasi adalah versi Brown8217s, hanya karena dapat diimplementasikan dengan satu kolom formula dan hanya ada satu smoothing constant yang bisa dioptimalkan. Biasanya lebih baik menggunakan versi Holt8217 yang memiliki konstanta pemulusan terpisah untuk tingkat dan tren. Proses peramalan berjalan sebagai berikut: (i) pertama data disesuaikan secara musiman (ii) maka prakiraan dihasilkan untuk data penyesuaian musiman melalui pemulusan eksponensial linier dan (iii) perkiraan musim yang disesuaikan secara musiman adalah kuotimasi untuk mendapatkan perkiraan untuk rangkaian aslinya. . Proses penyesuaian musiman dilakukan di kolom D sampai G. Langkah pertama dalam penyesuaian musiman adalah menghitung rata-rata pergerakan terpusat (dilakukan di kolom D). Hal ini dapat dilakukan dengan menghitung rata-rata dua rata-rata satu tahun yang diimbangi dengan satu periode relatif terhadap satu sama lain. (Kombinasi dua rata-rata offset daripada rata-rata tunggal diperlukan untuk tujuan pemetikan saat jumlah musim genap.) Langkah selanjutnya adalah menghitung rasio terhadap rata-rata pergerakan - i. Data asli dibagi dengan rata-rata bergerak pada setiap periode - yang dilakukan di sini pada kolom E. (Ini juga disebut komponen siklus-trenwot dari pola, sejauh kecenderungan dan efek siklus bisnis dapat dianggap sebagai semua hal Tetap setelah rata-rata selama satu tahun penuh data. Tentu saja, perubahan bulan ke bulan yang bukan karena musiman dapat ditentukan oleh banyak faktor lainnya, namun rata-rata 12 bulan di atas mereka untuk sebagian besar.) Indeks musiman diperkirakan untuk setiap musim dihitung dengan rata-rata pertama untuk semua rasio untuk musim tertentu, yang dilakukan di sel G3-G6 menggunakan formula AVERAGEIF. Rasio rata-rata kemudian dikompres sehingga jumlahnya mencapai 100 kali jumlah periode dalam satu musim, atau 400 dalam kasus ini, yang dilakukan pada sel H3-H6. Di bawah kolom F, formula VLOOKUP digunakan untuk memasukkan nilai indeks musiman yang sesuai di setiap baris tabel data, sesuai dengan kuartal tahun yang diwakilinya. Rata-rata pergerakan terpusat dan data yang disesuaikan musiman akhirnya terlihat seperti ini: Perhatikan bahwa rata-rata bergerak biasanya terlihat seperti versi yang lebih halus dari rangkaian yang disesuaikan secara musiman, dan ini lebih pendek pada kedua ujungnya. Lembar kerja lain dalam file Excel yang sama menunjukkan penerapan model smoothing eksponensial linier ke data yang disesuaikan secara musiman, dimulai pada kolom G. Nilai untuk konstanta pemulusan (alpha) dimasukkan di atas kolom perkiraan (di sini, di sel H9) dan Untuk kenyamanan itu diberi nama kisaran quotAlpha. quot (Nama tersebut diberikan dengan menggunakan perintah quotInsertNameCreatequot.) Model LES diinisialisasi dengan menetapkan dua prakiraan pertama yang sama dengan nilai sebenarnya dari seri yang disesuaikan secara musiman. Rumus yang digunakan di sini untuk perkiraan LES adalah bentuk rekursif tunggal model Brown8217s: Formula ini dimasukkan ke dalam sel yang sesuai dengan periode ketiga (di sini, sel H15) dan disalin dari sana. Perhatikan bahwa perkiraan LES untuk periode saat ini mengacu pada dua observasi sebelumnya dan dua kesalahan perkiraan sebelumnya, serta nilai alpha. Dengan demikian, rumus peramalan pada baris 15 hanya mengacu pada data yang tersedia pada baris 14 dan sebelumnya. (Tentu saja, jika kita ingin menggunakan yang sederhana daripada pemulusan eksponensial linier, kita bisa mengganti formula SES di sini sebagai gantinya. Kita juga bisa menggunakan model LES Holt8217s daripada Brown8217s, yang memerlukan dua kolom rumus untuk menghitung tingkat dan tren. Yang digunakan dalam ramalan.) Kesalahan dihitung di kolom berikutnya (di sini, kolom J) dengan mengurangi perkiraan dari nilai sebenarnya. Kesalahan kuadrat rata-rata akar dihitung sebagai akar kuadrat dari varians kesalahan ditambah kuadrat mean. (Berikut ini dari identitas matematis: MSE VARIANCE (error) (RATA-RATA (kesalahan)) 2.) Dalam menghitung mean dan varians dari kesalahan dalam formula ini, dua periode pertama dikeluarkan karena model tidak benar-benar mulai meramalkan sampai Periode ketiga (baris 15 di spreadsheet). Nilai alfa yang optimal dapat ditemukan baik dengan mengubah alpha secara manual sampai RMSE minimum ditemukan, atau Anda dapat menggunakan quotSolverquot untuk melakukan minimisasi yang tepat. Nilai alfa yang ditemukan Solver ditunjukkan di sini (alpha0.471). Biasanya ide bagus untuk merencanakan kesalahan model (dalam unit yang diubah) dan juga untuk menghitung dan merencanakan autokorelasi mereka pada kelambatan hingga satu musim. Berikut adalah rangkaian rangkaian waktu dari kesalahan (yang disesuaikan secara musiman): Autokorelasi kesalahan dihitung dengan menggunakan fungsi CORREL () untuk menghitung korelasi kesalahan dengan sendirinya yang tertinggal oleh satu atau beberapa periode - rincian ditampilkan dalam model spreadsheet . Berikut adalah sebidang autocorrelations dari kesalahan pada lima kelambatan pertama: Autokorelasi pada lags 1 sampai 3 sangat mendekati nol, namun lonjakan pada lag 4 (yang nilainya 0,35) sedikit merepotkan - ini menunjukkan bahwa Proses penyesuaian musiman belum sepenuhnya berhasil. Namun, sebenarnya hanya sedikit signifikan. 95 pita signifikan untuk menguji apakah autokorelasi berbeda secara signifikan dari nol kira-kira plus-atau-minus 2SQRT (n-k), di mana n adalah ukuran sampel dan k adalah lag. Di sini n adalah 38 dan k bervariasi dari 1 sampai 5, jadi kuadrat-akar-of-n-minus-k adalah sekitar 6 untuk semua itu, dan karenanya batas untuk menguji signifikansi statistik penyimpangan dari nol kira-kira plus - Atau-minus 26, atau 0,33. Jika Anda memvariasikan nilai alfa dengan tangan dalam model Excel ini, Anda dapat mengamati pengaruhnya pada deret waktu dan plot autokorelasi dari kesalahan, serta pada kesalahan akar-mean-kuadrat, yang akan digambarkan di bawah ini. Di bagian bawah spreadsheet, rumus peramalan adalah quotbootstrappedquot ke masa depan dengan hanya mengganti perkiraan untuk nilai aktual pada titik di mana data aktual habis - yaitu. Dimana quotthe futurequot dimulai. (Dengan kata lain, di setiap sel di mana nilai data masa depan akan terjadi, referensi sel dimasukkan yang mengarah ke perkiraan yang dibuat untuk periode itu.) Semua rumus lainnya hanya disalin dari atas: Perhatikan bahwa kesalahan untuk perkiraan Masa depan semuanya dihitung menjadi nol. Ini tidak berarti kesalahan sebenarnya akan menjadi nol, namun ini hanya mencerminkan fakta bahwa untuk tujuan prediksi, kita mengasumsikan bahwa data masa depan akan sama dengan perkiraan rata-rata. Perkiraan LES yang dihasilkan untuk data penyesuaian musiman terlihat seperti ini: Dengan nilai alpha tertentu ini, yang optimal untuk prediksi satu periode di depan, tren yang diproyeksikan sedikit ke atas, yang mencerminkan tren lokal yang diamati selama 2 tahun terakhir. Atau lebih. Untuk nilai alpha lainnya, proyeksi tren yang sangat berbeda bisa didapat. Biasanya ide bagus untuk melihat apa yang terjadi pada proyeksi tren jangka panjang ketika alfa bervariasi, karena nilai yang terbaik untuk peramalan jangka pendek tidak akan menjadi nilai terbaik untuk memprediksi masa depan yang lebih jauh. Sebagai contoh, berikut ini adalah hasil yang diperoleh jika nilai alpha diatur secara manual menjadi 0,25: Tren jangka panjang yang diproyeksikan sekarang negatif daripada positif Dengan nilai alpha yang lebih kecil, model ini menempatkan bobot lebih pada data lama di Perkiraan tingkat dan tren saat ini, dan perkiraan jangka panjangnya mencerminkan tren penurunan yang diamati selama 5 tahun terakhir daripada tren kenaikan yang lebih baru. Bagan ini juga secara jelas mengilustrasikan bagaimana model dengan nilai alpha yang lebih kecil lebih lambat untuk merespons quotturning pointsquot dalam data dan oleh karena itu cenderung membuat kesalahan dari tanda yang sama untuk banyak periode berturut-turut. Kesalahan perkiraan 1 langkahnya lebih besar rata-rata dibandingkan yang diperoleh sebelumnya (RMSE 34,4 bukan 27,4) dan autokorelasi positif sangat positif. Autokorelasi lag-1 sebesar 0,56 sangat melebihi nilai 0,33 yang dihitung di atas untuk penyimpangan signifikan secara statistik dari nol. Sebagai alternatif untuk menurunkan nilai alpha dalam rangka memperkenalkan lebih banyak konservatisme ke dalam ramalan jangka panjang, faktor perendaman shortdown cenderung ditambahkan ke model untuk membuat tren yang diproyeksikan merata setelah beberapa periode. Langkah terakhir dalam membangun model peramalan adalah untuk memperkirakan tingkat perkiraan LES dengan memperbanyaknya dengan indeks musiman yang sesuai. Dengan demikian, ramalan yang direvisi di kolom I hanyalah produk dari indeks musiman di kolom F dan perkiraan LES musiman yang disesuaikan di kolom H. Hal ini relatif mudah untuk menghitung interval kepercayaan untuk perkiraan satu langkah yang dibuat oleh model ini: pertama Menghitung RMSE (kesalahan akar-mean-kuadrat, yang merupakan akar kuadrat dari MSE) dan kemudian menghitung interval kepercayaan untuk ramalan musiman disesuaikan dengan menambahkan dan mengurangkan dua kali RMSE. (Secara umum interval kepercayaan 95 untuk perkiraan satu periode di depan kira-kira sama dengan perkiraan titik ditambah atau minus dua kali perkiraan deviasi standar dari kesalahan perkiraan, dengan asumsi distribusi kesalahan kira-kira normal dan ukuran sampel Cukup besar, katakanlah, 20 atau lebih. Berikut ini, RMSE daripada standar deviasi sampel dari kesalahan adalah perkiraan terbaik dari standar deviasi kesalahan perkiraan di masa depan karena diperlukan variasi yang bias dan juga variasi acak.) Batas kepercayaan Untuk perkiraan musiman disesuaikan kemudian reseasonalized. Bersama dengan perkiraan, dengan mengalikannya dengan indeks musiman yang sesuai. Dalam hal ini RMSE sama dengan 27,4 dan perkiraan penyesuaian musiman untuk periode depan pertama (Des-93) adalah 273,2. Sehingga interval kepercayaan 95 yang disesuaikan musiman adalah dari 273,2-227,4 218,4 sampai 273,2227,4 328,0. Mengalikan batas ini dengan indeks musiman Decembers sebesar 68,61. Kita memperoleh batas kepercayaan bawah dan atas 149,8 dan 225,0 sekitar perkiraan titik 93 Desember 187,4. Batas keyakinan untuk perkiraan lebih dari satu periode ke depan umumnya akan melebar seiring perkiraan horizon meningkat, karena ketidakpastian tentang tingkat dan kecenderungan serta faktor musiman, namun sulit untuk menghitungnya secara umum dengan metode analitik. (Cara yang tepat untuk menghitung batas kepercayaan untuk perkiraan LES adalah dengan menggunakan teori ARIMA, namun ketidakpastian dalam indeks musiman adalah masalah lain.) Jika Anda menginginkan interval kepercayaan yang realistis untuk perkiraan lebih dari satu periode di depan, mengambil semua sumber Dengan mempertimbangkan kesalahan, taruhan terbaik Anda adalah menggunakan metode empiris: misalnya, untuk mendapatkan interval kepercayaan untuk perkiraan 2 langkah di depan, Anda bisa membuat kolom lain di spreadsheet untuk menghitung perkiraan 2 langkah untuk setiap periode ( Dengan melakukan bootstrap perkiraan satu langkah di depan). Kemudian hitung RMSE dari perkiraan kesalahan 2 langkah di depan dan gunakan ini sebagai dasar untuk interval keyakinan 2 langkah. Analisis Resmi dengan Microsoft Excel: Bekerja dengan Seri Waktu Musiman Dalam Bab ini Rata-rata Rata-rata Rata-Rata Bergerak Rata-rata dan Berpusat Bergerak Rata-rata Regresi Linier dengan Vektor Kode Pemodelan Eksponensial Smoothing Model Holt-Winters yang Modern Halal secara bertahap menjadi lebih rumit bila Anda memiliki rangkaian waktu yang dicirikan sebagian oleh musiman: kecenderungan tingkatnya naik dan turun sesuai dengan berlalunya musim . Kami menggunakan istilah musim dalam arti yang lebih umum daripada makna sehari-harinya di tahun8217 empat musim. Dalam konteks analisis prediktif, satu musim bisa menjadi satu hari jika pola diulang setiap minggu, atau satu tahun dalam hal siklus pemilihan presiden, atau hampir di antara keduanya. Pergeseran delapan jam di rumah sakit bisa mewakili satu musim. Bab ini membahas bagaimana menguraikan deret waktu sehingga Anda dapat melihat bagaimana musimannya beroperasi terlepas dari trennya (jika ada). Seperti yang Anda harapkan dari materi dalam Bab 3 dan 4, beberapa pendekatan tersedia untuk Anda. Rata-rata Musiman Sederhana Penggunaan rata-rata musiman sederhana untuk model rangkaian waktu terkadang memberi Anda model data yang cukup kasar. Namun pendekatan ini memperhatikan musim di kumpulan data, dan teknik ini mudah dikenali dengan lebih akurat daripada teknik peramalan eksponensial sederhana saat musim hujan diucapkan. Tentu ini berfungsi sebagai pengantar yang berguna untuk beberapa prosedur yang digunakan dengan deret waktu yang bersifat musiman dan cenderung tren, jadi lihatlah contoh pada Gambar 5.1. Gambar 5.1 Dengan model horizontal, hasil rata-rata sederhana menghasilkan ramalan yang tidak lebih dari sekadar sarana musiman. Data dan grafik yang ditunjukkan pada Gambar 5.1 mewakili jumlah rata-rata hit harian ke situs web yang melayani penggemar National Football League. Setiap pengamatan di kolom D menunjukkan jumlah rata-rata hit per hari di masing-masing empat perempat dalam rentang waktu lima tahun. Mengidentifikasi Pola Musiman Anda bisa tahu dari rata-rata di kisaran G2: G5 bahwa efek kuartalan yang berbeda sedang terjadi. Jumlah rata-rata hit terbesar terjadi saat musim gugur dan musim dingin, saat 16 pertandingan utama dan playoff dijadwalkan. Bunga, yang diukur dengan hit harian rata-rata, menurun selama musim semi dan musim panas. Rata-rata mudah untuk menghitung apakah Anda merasa nyaman dengan formula array atau tidak. Untuk mendapatkan rata-rata dari kelima kasus Quarter 1, misalnya, Anda dapat menggunakan formula array ini di sel G2 pada Gambar 5.1: Array-masukkan dengan CtrlShiftEnter. Atau Anda dapat menggunakan fungsi AVERAGEIF (), yang dapat Anda masukkan dengan cara biasa, menekan tombol Enter. Secara umum, saya lebih memilih pendekatan rumus array karena memberi saya ruang lingkup untuk kontrol yang lebih besar atas fungsi dan kriteria yang terlibat. Seri data yang dipetakan mencakup label data yang menunjukkan kuota masing-masing titik data. Bagan tersebut menggemakan pesan rata-rata di G2: G5: Perempat 1 dan 4 berulang kali mendapat banyak klik. Ada musim yang jelas di set data ini. Menghitung Indeks Musiman Setelah Anda memutuskan bahwa deret waktu memiliki komponen musiman, Anda ingin mengukur ukuran efeknya. Rata-rata yang ditunjukkan pada Gambar 5.2 menunjukkan bagaimana metode rata-rata sederhana berjalan mengenai tugas itu. Gambar 5.2 Kombinasikan mean grand dengan rata-rata musiman untuk mendapatkan indeks musiman. Pada Gambar 5.2. Anda mendapatkan indeks musiman tambahan di kisaran G10: G13 dengan mengurangi mean grand di sel G7 dari setiap rata-rata musiman di G2: G5. Hasilnya adalah 8220effect8221 berada di Quarter 1, berada di Quarter 2, dan seterusnya. Jika bulan yang ditentukan ada di Quarter 1, Anda memperkirakan jumlah klik harian rata-rata lebih tinggi dari rata-rata 99,65 dari rata-rata 140,35 klik per hari. Informasi ini memberi Anda rasa betapa pentingnya berada di musim yang ditentukan. Misalkan Anda memiliki situs web yang dimaksud dan Anda ingin menjual ruang iklan di atasnya. Anda pasti bisa meminta harga pengiklan yang lebih tinggi selama kuartal pertama dan keempat daripada pada periode kedua dan ketiga. Lebih tepatnya, Anda mungkin bisa melakukan pembayaran dua kali lipat selama kuartal pertama dibandingkan pada periode kedua atau ketiga. Dengan indeks musiman di tangan, Anda juga bisa menghitung penyesuaian musiman. Misalnya, masih pada Gambar 5.2. Nilai penyesuaian musiman untuk setiap kuartal di tahun 2005 muncul di G16: G19. Mereka dihitung dengan mengurangkan indeks dari pengukuran kuartalan yang terkait. Secara tradisional, istilah indeks musiman mengacu pada kenaikan atau penurunan tingkat seri yang terkait dengan setiap musim. Istilah musiman identik efek telah muncul dalam literatur dalam beberapa tahun terakhir. Karena Anda akan melihat kedua istilah itu, saya menggunakan keduanya dalam buku ini. Ini adalah masalah kecil yang perlu diingat bahwa kedua istilah memiliki arti yang sama. Perhatikan bahwa dalam kejadian normal dari tahun 2001 sampai 2005, Anda memperkirakan hasil kuartal kedua8217s tertinggal dari hasil kuartal pertama 2.717s dengan 133,6 (yaitu, 99,65 dikurangi 821133.95). Namun di tahun 2004 dan 2005, hasil penyesuaian musiman untuk kuartal kedua melebihi angka pada kuartal pertama. Hasil itu mungkin akan meminta Anda untuk menanyakan apa yang telah berubah dalam dua tahun terakhir yang membalikkan hubungan antara hasil penyesuaian musiman untuk dua kuartal pertama. (Saya tidak dapat mengemukakan masalah itu di sini. Saya mengemukakannya untuk menyarankan agar Anda sering melihat-lihat gambar yang teramati dan disesuaikan musiman). Peramalan dari Rata-Rata Rata-Rata Musiman: Tidak Ada Trend Meskipun metode rata-rata sederhana adalah seperti yang saya katakan Lebih jauh lagi, ini bisa jauh lebih akurat daripada alternatif pemulusan eksponensial yang lebih canggih, terutama bila efek musiman diucapkan dan dapat diandalkan. Bila deret waktu tidak tersentuh, seperti contoh contoh yang telah dibahas dalam bagian ini, perkiraan musiman sederhana tidak lebih dari rata-rata musiman. Bila seri tidak tren naik atau turun, perkiraan terbaik Anda untuk nilai musim depan adalah rata-rata historis season8217. Lihat Gambar 5.3. Gambar 5.3 Kombinasikan mean grand dengan rata-rata musiman untuk mendapatkan indeks musiman. Pada bagan pada Gambar 5.3. Garis putus-putus mewakili ramalan dari perataan sederhana. Dua garis padat mewakili pengamatan musiman aktual dan rata-rata musiman. Perhatikan bahwa rata-rata musiman melacak pengamatan musiman yang sebenarnya cukup dekat dibandingkan dengan perkiraan merapikannya. Anda dapat melihat seberapa jauh jaraknya dari dua RMSE dalam sel F23 dan H23. RMSE untuk rata-rata musiman hanya sedikit lebih dari sepertiga RMSE untuk ramalan yang dihaluskan. Anda dapat menghitungnya sampai seukuran efek musiman dan juga konsistensi mereka: Misalnya, misalnya, perbedaan antara rata-rata kuartal pertama dan kedua adalah 35,0 dan bukan 133,6 (yang merupakan perbedaan antara sel G2 dan G3 pada Gambar 5.2). Kemudian, dalam konteks smoothing, nilai sebenarnya untuk Quarter 1 akan menjadi prediktor nilai Triwulan 2 yang jauh lebih baik daripada yang ada pada seri waktu ini. Dan perataan eksponensial dapat sangat bergantung pada nilai pengamatan saat ini untuk perkiraan periode berikutnya. Jika konstanta smoothing ditetapkan pada 1.0, eksponensial smoothing memutuskan untuk memperkirakan secara neto dan perkiraan selalu sama dengan sebelumnya. Fakta bahwa ukuran setiap ayunan musiman sangat konsisten dari kuartal ke kuartal berarti rata-rata musiman sederhana adalah perkiraan yang dapat dipercaya: Tidak ada pengamatan kuartalan aktual yang berangkat sangat jauh dari keseluruhan rata-rata musiman. Rata-rata Rata-rata Rata-Rata dengan Trend Penggunaan rata-rata musiman sederhana dengan rangkaian yang trending memiliki beberapa kekurangan nyata, dan I8217m tergoda untuk menyarankan agar kita mengabaikannya dan beralih ke topik yang lebih baik. Tapi mungkin Anda akan mengalami situasi di mana seseorang telah menggunakan metode ini dan kemudian tidak salah bila mengetahui bagaimana cara kerjanya dan mengapa ada pilihan yang lebih baik. Setiap metode untuk menangani seasonality dalam rangkaian yang dilontarkan harus menghadapi masalah mendasar dalam menguraikan efek dari tren musiman. Musiman cenderung tidak jelas, dan sebaliknya. Lihat Gambar 5.4. Gambar 5.4 Kehadiran tren mempersulit perhitungan efek musiman. Fakta bahwa tren dalam rangkaian ini naik dari waktu ke waktu berarti bahwa hanya rata-rata setiap pengamatan season8217, seperti yang dilakukan dalam kasus tanpa tren, mengacaukan tren umum dengan variasi musiman. Ide yang biasa adalah menjelaskan tren secara terpisah dari efek musiman. Anda bisa mengukur tren dan mengurangi pengaruhnya dari data yang diobservasi. Hasilnya adalah rangkaian untrended yang mempertahankan variasi musiman. Hal itu bisa ditangani dengan cara yang sama seperti yang saya gambarkan sebelumnya di bab ini. Menghitung Mean untuk Setiap Tahun Salah satu cara untuk detrend data (dan cara lain pasti akan terjadi pada Anda) adalah menghitung tren berdasarkan rata-rata tahunan daripada data kuartalan. Idenya adalah rata-rata tahunan tidak sensitif terhadap efek musiman. Artinya, jika Anda mengurangi nilai rata-rata tahun ke tahun dari nilai untuk masing-masing perempatnya, jumlah (dan rata-rata) dari empat efek kuartalan adalah nol. Jadi, tren yang dihitung dengan menggunakan rata-rata tahunan tidak terpengaruh oleh variasi musiman. Perhitungan ini muncul pada Gambar 5.5. Gambar 5.5 Metode ini sekarang menerapkan regresi linier pada rata-rata sederhana. Langkah pertama dalam detrending data adalah mendapatkan rata-rata hit harian setiap tahunnya. Itu dilakukan pada kisaran H3: H7 pada Gambar 5.5. Rumus di sel H3, misalnya, adalah RATA-RATA (D3: D6). Menghitung Trend Berdasarkan Sarana Tahunan Dengan rata-rata tahunan di tangan, Anda berada dalam posisi untuk menghitung tren mereka. That8217s dikelola dengan menggunakan LINEST () di kisaran I3: J7, dengan menggunakan rumus array ini: Jika Anda tidak memberikan nilai x sebagai argumen kedua ke LINEST (). Excel menyediakan nilai x default untuk Anda. Defaultnya hanyalah bilangan bulat berurutan yang dimulai dengan 1 dan diakhiri dengan jumlah nilai y yang Anda panggil dalam argumen pertama. Dalam contoh ini, nilai x default sama dengan yang ditentukan pada lembar kerja di G3: G7, jadi Anda bisa menggunakan LINEST (H3: H7. TRUE). Rumus ini menggunakan dua default, untuk nilai-x dan konstanta, yang ditunjukkan oleh tiga koma berturut-turut. Inti dari latihan ini adalah mengukur tren dari tahun ke tahun, dan LINEST () melakukannya untuk Anda di sel I3. Sel itu mengandung koefisien regresi untuk nilai-x. Kalikan 106,08 dengan 1 maka dengan 2 maka dengan 3, 4, dan 5 dan tambahkan ke setiap hasil intercept dari 84,63. Meskipun itu membuat Anda memperkirakan tahunan, poin penting untuk prosedur ini adalah nilai koefisien 106,08, yang mengukur tren tahunan. Langkah yang baru saja saya diskusikan adalah sumber keraguan saya tentang keseluruhan pendekatan yang digambarkan oleh bagian ini. Anda biasanya memiliki sejumlah kecil periode yang melingkupi dalam contoh ini, tahun8282 untuk menjalankan regresi. Hasil regresi sering kali tidak stabil saat, seperti di sini, mereka didasarkan pada sejumlah kecil pengamatan. Namun, prosedur ini bergantung pada hasil-hasil itu dengan berat untuk mengurangi deret waktu. Merancang Tren Sepanjang Musim Metode rata-rata sederhana untuk menghadapi seri musiman yang tertunda seperti yang satu ini terus berlanjut dengan membagi tren dengan jumlah periode dalam periode yang mencakup untuk mendapatkan tren per periode. Di sini, jumlah periode per tahun adalah empat8212we8217 bekerja dengan data triwulanan8212 jadi kita membagi 106,08 menjadi 4 untuk memperkirakan tren per kuartal di 26,5. Prosedur menggunakan tren periodik dengan mengurangkannya dari hasil periodik rata-rata. Tujuannya adalah untuk menghapus efek tren tahunan dari efek musiman. Pertama, kita perlu menghitung hasil rata-rata sepanjang lima tahun untuk Periode 1, untuk Periode 2 dan seterusnya. Untuk melakukan itu, ada baiknya mengatur ulang daftar klik kuartalan aktual, yang ditunjukkan pada kisaran D3: D22 pada Gambar 5.5. Ke dalam matriks lima tahun empat perempat, ditunjukkan pada kisaran G11: J15. Perhatikan bahwa nilai-nilai dalam matriks tersebut sesuai dengan daftar di kolom D. Dengan data yang disusun dengan cara itu, mudah untuk menghitung nilai kuartalan rata-rata selama lima tahun dalam kumpulan data. Itu dilakukan pada kisaran G18: J18. Efek dari tren yang dikembalikan oleh LINEST () muncul di kisaran G19: J19. Nilai awal untuk setiap tahun adalah rata-rata hit harian yang diamati untuk kuartal pertama, jadi kami tidak melakukan penyesuaian untuk kuartal pertama. Tren seperempat8217s, atau 26,5, dikurangi dari angka rata-rata kuartal kedua8217, yang menghasilkan nilai kuartal kedua yang disesuaikan 329,9 (lihat sel H21, Gambar 5.5). Tren dua quarters8217, 2 215 26,5 atau 53 pada sel I19, dikurangkan dari kuartal ketiga tahun 1982 yang berarti untuk mendapatkan nilai kuartal ketiga yang disesuaikan sebesar 282,6 pada sel I21. Dan juga untuk kuartal keempat, mengurangi tiga perempat tren dari 454,4 untuk mendapatkan 374,8 di sel J21. Ingatlah bahwa jika tren turun dan bukan naik, seperti dalam contoh ini, Anda akan menambahkan nilai tren periodik ke mean periodik yang diamati alih-alih mengurangkannya. Mengubah Sarana Musiman yang Disesuaikan dengan Efek Musiman Per logika metode ini, nilai yang ditunjukkan pada baris 20821121 pada Gambar 5.5 adalah hasil kuartalan rata-rata untuk masing-masing empat perempat, dengan efek kecenderungan kenaikan umum pada kumpulan data yang dihapus. (Baris 20 dan 21 digabungkan dalam kolom G sampai J.) Dengan kecenderungan mereka, kita dapat mengubah angka tersebut menjadi perkiraan efek musiman. Hasil di kuartal pertama, di kuarter kedua, dan seterusnya. Untuk mendapatkan efek tersebut, mulailah dengan menghitung mean rata-rata dari mean kuartalan yang disesuaikan. Itu berarti grand yang disesuaikan muncul di sel I23. Analisis berlanjut pada Gambar 5.6. Gambar 5.6 Efek kuartalan, atau indeks, digunakan untuk mendokumentasikan kuartalan yang diamati. Gambar 5.6 mengulang penyesuaian kuartalan dan mean grand yang disesuaikan dari bagian bawah Gambar 5.5. Mereka digabungkan untuk menentukan indeks kuartalan (yang juga dapat Anda anggap sebagai efek musiman). Misalnya, rumus di sel D8 adalah sebagai berikut: Ia mengembalikan 821133.2. Itu adalah efek dari pada kuartal kedua, vis-224-vis grand mean: Sehubungan dengan grand mean, kita bisa mengharapkan hasil yang termasuk pada kuartal kedua turun di bawah grand mean sebesar 33,2 unit. Menerapkan Efek musiman pada Triwulan yang Teramati Untuk rekap: Sejauh ini, kami mengukur tren tahunan data melalui regresi dan membagi kecenderungan itu dengan 4 untuk mengembalikannya ke nilai kuartalan. Mengambil pada Gambar 5.6. Kami menyesuaikan rata-rata untuk setiap kuartal (dalam C3: F3) dengan mengurangi tren prorata di C4: F4. Hasilnya adalah perkiraan rata-rata untuk setiap kuartal, terlepas dari tahun di mana kuartal berlangsung, di C5: F5. Kami mengurangi mean grand yang disesuaikan, di sel G5, dari mean kuartalan yang disesuaikan di C5: F5. Yang mengubah setiap quarter8217s berarti ukuran efek setiap triwulan relatif terhadap mean grand yang disesuaikan. Itu adalah indeks musiman atau efek di C8: F8. Selanjutnya kita menghilangkan efek musiman dari kuartalan yang diamati. Seperti ditunjukkan pada Gambar 5.6. Anda melakukannya dengan mengurangi indeks kuartalan di C8: F8 dari nilai yang sesuai di C12: F16. Dan cara termudah untuk melakukannya adalah dengan memasukkan formula ini ke dalam sel C20: Perhatikan tanda satu dolar sebelum 8 di referensi ke C8. Itu adalah referensi campuran: sebagian relatif dan sebagian absolut. Tanda dolar jangkar menunjuk pada baris kedelapan, namun bagian kolom referensi bebas untuk bervariasi. Oleh karena itu, setelah formula yang terakhir dimasukkan ke dalam sel C20, Anda bisa mengklik pegangan seleksi cell8217s (kotak kecil di sudut kanan bawah sel yang dipilih) dan seret ke sel F20. Alamat menyesuaikan saat Anda menyeret ke kanan dan Anda mengakhiri nilai, dengan efek musiman dihapus, untuk tahun 2001 di C20: F20. Pilih rentang empat sel itu dan gunakan pegangan multiple selection8217s, sekarang di F20, untuk menarik ke bawah ke baris 24. Jadi, lakukan pengisian sisa matriks. Hal penting yang perlu diingat di sini adalah bahwa kita menyesuaikan nilai kuartalan asli untuk efek musiman. Tren apa pun yang ada di nilai aslinya masih ada, dan teori ini, setidaknya ada di sana setelah kita melakukan penyesuaian untuk efek musiman. Kami telah menghilangkan tren, ya, tapi hanya dari efek musiman. Jadi, bila kita mengurangi efek musiman (detrended) dari pengamatan kuartalan awal, hasilnya adalah pengamatan asli dengan kecenderungan namun tanpa efek musiman. Saya telah memetakan nilai penyesuaian musiman pada Gambar 5.6. Bandingkan bagan itu dengan bagan pada Gambar 5.4. Perhatikan pada Gambar 5.6 bahwa meskipun nilai deseasonalized tidak terletak tepat pada garis lurus, sebagian besar efek musiman telah dihapus. Menekankan Triwulan Deseasonalized ke Periode Waktu Langkah selanjutnya adalah membuat perkiraan dari data yang disesuaikan musiman dan tertimbang pada Gambar 5.6. Sel C20: F24, dan pada titik ini Anda memiliki beberapa alternatif yang tersedia. Anda bisa menggunakan pendekatan differencing yang dikombinasikan dengan perataan eksponensial sederhana yang telah dibahas di Bab 3, 8220 Bekerja dengan Trending Time Series.8221 Anda juga bisa menggunakan pendekatan Holt8217 untuk merapikan seri yang dilemahkan, yang dibahas dalam Bab 3 dan Bab 4, 8220Mengumumkan Prakiraan.8221 Keduanya Metode menempatkan Anda pada posisi untuk membuat perkiraan satu langkah di depan, yang akan Anda tambahkan pada indeks musiman yang sesuai. Pendekatan lain, yang akan digunakan di sini, pertama-tama menempatkan data yang trending melalui contoh regresi linier yang lain dan kemudian menambahkan indeks musiman. Lihat Gambar 5.7. Gambar 5.7 Prakiraan pertama yang benar adalah di baris 25. Gambar 5.7 mengembalikan mean kuartalan dua kali dari pengaturan tabel di C20: F24 pada Gambar 5.6 ke susunan daftar di kisaran C5: C24 pada Gambar 5.7. Kita bisa menggunakan LINEST () dalam hubungannya dengan data di B5: C24 pada Gambar 5.7 untuk menghitung persamaan regresi8217s intercept dan koefisien, maka kita dapat mengalikan koefisien dengan setiap nilai pada kolom B, dan menambahkan intercept ke setiap produk, untuk membuat Prakiraan di kolom D. Tetapi walaupun LINEST () mengembalikan informasi yang berguna selain koefisien dan intercept, TREND () adalah cara yang lebih cepat untuk mendapatkan perkiraan, dan saya menggunakannya pada Gambar 5.7. Rentang D5: D24 berisi perkiraan yang menghasilkan kemunduran angka kuartalan deseasonalized di C5: C24 ke nomor periode di B5: B24. The array formula used in D5:D24 is this: That set of results reflects the effect of the general upward trend in the time series. Because the values that TREND() is forecasting from have been deseasonalized, it remains to add the seasonal effects, also known as seasonal indexes, back in to the trended forecast. Adding the Seasonal Indexes Back In The seasonal indexes, calculated in Figure 5.6. are provided in Figure 5.7. first in the range C2:F2 and then repeatedly in the range E5:E8, E9:E12, and so on. The reseasonalized forecasts are placed in F5:F24 by adding the seasonal effects in column E to the trend forecasts in column D. To get the one-step-ahead forecast in cell F25 of Figure 5.7. the value of t for the next period goes into cell B25. The following formula is entered in cell D25: It instructs Excel to calculate the regression equation that forecasts values in the range C5:C24 from those in B5:B24, and apply that equation to the new x-value in cell B25. The appropriate seasonal index is placed in cell E25, and the sum of D25 and E25 is placed in F25 as the first true forecast of the trended and seasonal time series. You8217ll find the entire set of deseasonalized quarterlies and the forecasts charted in Figure 5.8 . Figure 5.8 The seasonal effects are returned to the forecasts. Evaluating Simple Averages The approach to dealing with a seasonal time series, discussed in several prior sections, has some intuitive appeal. The basic idea seems straightforward: Calculate an annual trend by regressing annual means against a measure of time periods. Divide the annual trend among the periods within the year. Subtract the apportioned trend from the periodic effects to get adjusted effects. Subtract the adjusted effects from the actual measures to deseasonalize the time series. Create forecasts from the deseasonalized series, and add the adjusted seasonal effects back in. My own view is that several problems weaken the approach, and I would not have included it in this book except that you are likely to encounter it and therefore should be familiar with it. And it provides a useful springboard to discuss some concept and procedures found in other, stronger approaches. First, there8217s the issue (about which I complained earlier in this chapter) regarding the very small sample size for the regression of annual means onto consecutive integers that identify each year. Even with only one predictor, as few as 10 observations is really scraping the bottom of the barrel. At the very least you should look at the resulting R 2 adjusted for shrinkage and probably recalculate the standard error of estimate accordingly. It8217s true that the stronger the correlation in the population, the smaller the sample you can get away with. But working with quarters within years, you8217re fortunate to find as many as 10 years8217 worth of consecutive quarterly observations, each measured in the same way across that span of time. I8217m not persuaded that the answer to the problematic up-and-down pattern you find within a year (see the chart in Figure 5.4 ) is to average out the peaks and valleys and get a trend estimate from the annual means. Certainly it8217s one answer to that problem, but, as you8217ll see, there8217s a much stronger method of segregating the seasonal effects from an underlying trend, accounting for them both, and forecasting accordingly. I8217ll cover that method later in this chapter, in the 8220Linear Regression with Coded Vectors8221 section. Furthermore, there8217s no foundation in theory for distributing the annual trend evenly among the periods that compose the year. It8217s true that linear regression does something similar when it places its forecasts on a straight line. But there8217s a huge gulf between making a fundamental assumption because the analytic model can8217t otherwise handle the data, and accepting a flawed outcome whose flaws8212errors in the forecasts8212can be measured and evaluated. That said, let8217s move on to the use of moving averages instead of simple averages as a way of dealing with seasonality.
No comments:
Post a Comment